User interface language: English | Español

HL Paper 1

Prove by mathematical induction that dndxnx2ex=x2+2nx+nn-1ex for n+.

[7]
a.

Hence or otherwise, determine the Maclaurin series of fx=x2ex in ascending powers of x, up to and including the term in x4.

[3]
b.

Hence or otherwise, determine the value of limx0x2ex-x23x9.

[4]
c.

Markscheme

For n=1

LHS: ddxx2ex=x2ex+2xex=exx2+2x              A1

RHS: x2+21x+11-1ex=exx2+2x              A1

so true for n=1

now assume true for n=k; i.e. dkdxkx2ex=x2+2kx+kk-1ex                             M1


Note:
Do not award M1 for statements such as "let n=k". Subsequent marks can still be awarded.


attempt to differentiate the RHS                             M1

dk+1dxk+1x2ex=ddxx2+2kx+kk-1ex

=2x+2kex+x2+2kx+kk-1ex              A1

=x2+2k+1x+kk+1ex              A1

so true for n=k implies true for n=k+1

therefore n=1 true and n=k true n=k+1 true

therefore, true for all n+                    R1


Note:
Award R1 only if three of the previous four marks have been awarded

 

[7 marks]

a.

METHOD 1

attempt to use dndxnx2ex=x2+2nx+nn-1ex             (M1)


Note: For x=0dndxnx2exx=0=nn-1 may be seen.


f0=0,  f'0=0,  f''0=2,  f'''0=6,  f40=12

use of fx=f0+xf'0+x22!f''0+x33!f'''0+x44!f40+              (M1)

fxx2+x3+12x4              A1

 

METHOD 2

'x2× Maclaurin series of ex'             (M1)

x21+x+x22!+             (A1)

fxx2+x3+12x4              A1

 

[3 marks]

b.

METHOD 1

attempt to substitute x2exx2+x3+12x4 into x2ex-x23x9              M1

x2ex-x23x9x2+x3+12x4+-x23x9             (A1)


EITHER

=x3+12x4+3x9                   A1

=x9+higher order termsx9


OR

x3+12x4+x33                   A1

1+12x+3


THEN

=1 + higher order terms

so limx0x2ex-x23x9=1                   A1

 

METHOD 2

limx0x2ex-x23x9=limx0x2ex-x2x33                  M1

=limx0ex-1x3                  (A1)

attempt to use L'Hôpital's rule                  M1

=limx0ex-013

=limx0ex3

=1                  A1

 

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.



Consider the function f n ( x ) = ( cos 2 x ) ( cos 4 x ) ( cos 2 n x ) ,   n Z + .

Determine whether f n is an odd or even function, justifying your answer.

[2]
a.

By using mathematical induction, prove that

f n ( x ) = sin 2 n + 1 x 2 n sin 2 x ,   x m π 2 where m Z .

[8]
b.

Hence or otherwise, find an expression for the derivative of f n ( x ) with respect to x .

[3]
c.

Show that, for n > 1 , the equation of the tangent to the curve y = f n ( x ) at x = π 4 is 4 x 2 y π = 0 .

[8]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

even function     A1

since cos k x = cos ( k x ) and f n ( x ) is a product of even functions     R1

OR

even function     A1

since ( cos 2 x ) ( cos 4 x ) = ( cos ( 2 x ) ) ( cos ( 4 x ) )     R1

 

Note:     Do not award A0R1.

 

[2 marks]

a.

consider the case n = 1

sin 4 x 2 sin 2 x = 2 sin 2 x cos 2 x 2 sin 2 x = cos 2 x     M1

hence true for n = 1     R1

assume true for n = k , ie, ( cos 2 x ) ( cos 4 x ) ( cos 2 k x ) = sin 2 k + 1 x 2 k sin 2 x     M1

 

Note:     Do not award M1 for “let n = k ” or “assume n = k ” or equivalent.

 

consider n = k + 1 :

f k + 1 ( x ) = f k ( x ) ( cos 2 k + 1 x )     (M1)

= sin 2 k + 1 x 2 k sin 2 x cos 2 k + 1 x     A1

= 2 sin 2 k + 1 x cos 2 k + 1 x 2 k + 1 sin 2 x     A1

= sin 2 k + 2 x 2 k + 1 sin 2 x     A1

so n = 1 true and n = k true n = k + 1 true. Hence true for all n Z +     R1

 

Note:     To obtain the final R1, all the previous M marks must have been awarded.

 

[8 marks]

b.

attempt to use f = v u u v v 2 (or correct product rule)     M1

f n ( x ) = ( 2 n sin 2 x ) ( 2 n + 1 cos 2 n + 1 x ) ( sin 2 n + 1 x ) ( 2 n + 1 cos 2 x ) ( 2 n sin 2 x ) 2     A1A1

 

Note:     Award A1 for correct numerator and A1 for correct denominator.

 

[3 marks]

c.

f n ( π 4 ) = ( 2 n sin π 2 ) ( 2 n + 1 cos 2 n + 1 π 4 ) ( sin 2 n + 1 π 4 ) ( 2 n + 1 cos π 2 ) ( 2 n sin π 2 ) 2     (M1)(A1)

f n ( π 4 ) = ( 2 n ) ( 2 n + 1 cos 2 n + 1 π 4 ) ( 2 n ) 2     (A1)

= 2 cos 2 n + 1 π 4   ( = 2 cos 2 n 1 π )     A1

f n ( π 4 ) = 2     A1

f n ( π 4 ) = 0     A1

 

Note:     This A mark is independent from the previous marks.

 

y = 2 ( x π 4 )     M1A1

4 x 2 y π = 0     AG

[8 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.



The function f is defined by  f ( x ) = e x cos 2 x , where 0 ≤  x  ≤ 5. The curve  y = f ( x )  is shown on the following graph which has local maximum points at A and C and touches the x -axis at B and D.

Use integration by parts to show that e x cos 2 x d x = 2 e x 5 sin 2 x + e x 5 cos 2 x + c ,   c R .

[5]
a.

Hence, show that e x cos 2 x d x = e x 5 sin 2 x + e x 10 cos 2 x + e x 2 + c ,   c R .

[3]
b.

Find the x -coordinates of A and of C , giving your answers in the form  a + arctan b , where  a b R .

[6]
c.

Find the area enclosed by the curve and the x -axis between B and D, as shaded on the diagram.

[5]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

attempt at integration by parts with  u = e x ,   d v d x = cos 2 x       M1

e x cos 2 x d x = e x 2 sin 2 x d x e x 2 sin 2 x d x       A1

= e x 2 sin 2 x 1 2 ( e x 2 cos 2 x + e x 2 cos 2 x )       M1A1

e x 2 sin 2 x + e x 4 cos 2 x 1 4 e x cos 2 x d x

5 4 e x cos 2 x d x = e x 2 sin 2 x + e x 4 cos 2 x       M1

e x cos 2 x d x = 2 e x 5 sin 2 x + e x 5 cos 2 x ( + c )     AG

 

 

METHOD 2

attempt at integration by parts with u = cos 2 x d v d x = e x       M1

e x cos 2 x d x = e x cos 2 x + 2 e x sin 2 x d x       A1

= e x cos 2 x + 2 ( e x sin 2 x 2 e x cos 2 x d x )       M1A1

= e x cos 2 x + 2 e x sin 2 x 4 e x cos 2 x d x

5 e x cos 2 x d x = e x cos 2 x + 2 e x sin 2 x       M1

e x cos 2 x d x = 2 e x 5 sin 2 x + e x 5 cos 2 x ( + c )    AG

 

METHOD 3

attempt at use of table      M1

eg

      A1A1 

Note: A1 for first 2 lines correct, A1 for third line correct.

e x cos 2 x d x = e x cos 2 x + 2 e x sin 2 x 4 e x cos 2 x d x       M1

5 e x cos 2 x d x = e x cos 2 x + 2 e x sin 2 x       M1

e x cos 2 x d x = 2 e x 5 sin 2 x + e x 5 cos 2 x ( + c )    AG

 

[5 marks]

a.

e x co s 2 x d x = e x 2 ( cos 2 x + 1 ) d x      M1A1

= 1 2 ( 2 e x 5 sin 2 x + e x 5 cos 2 x ) + e x 2       A1

= e x 5 sin 2 x + e x 10 cos 2 x + e x 2 ( + c )       AG

Note: Do not accept solutions where the RHS is differentiated.

 

[3 marks]

b.

f ( x ) = e x co s 2 x 2 e x sin x cos x       M1A1

Note: Award M1 for an attempt at both the product rule and the chain rule.

e x cos x ( cos x 2 sin x ) = 0       (M1)

Note: Award M1 for an attempt to factorise  cos x  or divide by  cos x ( cos x 0 ) .

discount  cos x = 0  (as this would also be a zero of the function)

cos x 2 sin x = 0

tan x = 1 2       (M1)

x = arctan ( 1 2 ) (at A) and  x = π + arctan ( 1 2 )  (at C)      A1A1

Note: Award A1 for each correct answer. If extra values are seen award A1A0.

 

[6 marks]

c.

 

cos x = 0 x = π 2 or  3 π 2       A1

Note: The A1may be awarded for work seen in part (c).

π 2 3 π 2 ( e x co s 2 x ) d x = [ e x 5 sin 2 x + e x 10 cos 2 x + e x 2 ] π 2 3 π 2       M1

= ( e 3 π 2 10 + e 3 π 2 2 ) ( e π 2 10 + e π 2 2 ) ( = 2 e 3 π 2 5 2 e π 2 5 )       M1(A1)A1

Note: Award M1 for substitution of the end points and subtracting, (A1) for  sin 3 π = sin π = 0 and  cos 3 π = cos π = 1  and A1 for a completely correct answer.

 

[5 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.



Show that ( sin x + cos x ) 2 = 1 + sin 2 x .

[2]
a.

Show that sec 2 x + tan 2 x = cos x + sin x cos x sin x .

[4]
b.

Hence or otherwise find  0 π 6 ( sec 2 x + tan 2 x ) d x  in the form  ln ( a + b ) where a b Z .

[9]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

( sin x + cos x ) 2 = si n 2 x + 2 sin x cos x + co s 2 x       M1A1

Note: Do not award the M1 for just  si n 2 x + co s 2 x .

Note: Do not award A1 if correct expression is followed by incorrect working.

= 1 + sin 2 x       AG

[2 marks]

a.

sec 2 x + tan 2 x = 1 cos 2 x + sin 2 x cos 2 x      M1

Note: M1 is for an attempt to change both terms into sine and cosine forms (with the same argument) or both terms into functions of tan x .

= 1 + sin 2 x cos 2 x

= ( sin x + cos x ) 2 co s 2 x si n 2 x          A1A1

Note: Award A1 for numerator, A1 for denominator.

= ( sin x + cos x ) 2 ( cos x sin x ) ( cos x + sin x )      M1

= cos x + sin x cos x sin x       AG

Note: Apply MS in reverse if candidates have worked from RHS to LHS.

Note: Alternative method using tan 2 x and sec 2 x in terms of tan x .

[4 marks]

b.

METHOD 1

0 π 6 ( cos x + sin x cos x sin x ) d x        A1

Note: Award A1 for correct expression with or without limits.

EITHER

= [ ln ( cos x sin x ) ] 0 π 6   or   [ ln ( cos x sin x ) ] π 6 0        (M1)A1A1

Note: Award M1 for integration by inspection or substitution, A1 for  ln ( cos x sin x ) A1 for completely correct expression including limits.

= ln ( cos π 6 sin π 6 ) + ln ( cos 0 sin 0 )        M1

Note: Award M1 for substitution of limits into their integral and subtraction.

= ln ( 3 2 1 2 )        (A1)

OR

let  u = cos x sin x        M1

d u d x = sin x cos x = ( sin x + cos x )

1 3 2 1 2 ( 1 u ) d u        A1A1

Note: Award A1 for correct limits even if seen later, A1 for integral.

= [ ln u ] 1 3 2 1 2   or   [ ln u ] 3 2 1 2 1        A1

= ln ( 3 2 1 2 ) (  + ln 1 )        M1

THEN

= ln ( 2 3 1 )

Note: Award M1 for both putting the expression over a common denominator and for correct use of law of logarithms.

= ln ( 1 + 3 )        (M1)A1

 

METHOD 2

[ 1 2 ln ( tan 2 x + sec 2 x ) 1 2 ln ( cos 2 x ) ] 0 π 6       A1A1

= 1 2 ln ( 3 + 2 ) 1 2 ln ( 1 2 ) 0        A1A1(A1)

= 1 2 ln ( 4 + 2 3 )        M1

= 1 2 ln ( ( 1 + 3 ) 2 )        M1A1

= ln ( 1 + 3 )       A1

 

 

[9 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.



Consider the function f defined by f ( x ) = x 2 a 2 ,   x R where a is a positive constant.

The function g is defined by g ( x ) = x f ( x ) for | x | > a .

Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

y = f ( x ) ;

[2]
a.i.

Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

y = 1 f ( x ) ;

[4]
a.ii.

Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

y = | 1 f ( x ) | .

[2]
a.iii.

Find f ( x ) cos x d x .

[5]
b.

By finding g ( x ) explain why g is an increasing function.

[4]
c.

Markscheme

M17/5/MATHL/HP1/ENG/TZ2/09.a.i/M

A1 for correct shape

A1 for correct x and y intercepts and minimum point

[2 marks]

a.i.

M17/5/MATHL/HP1/ENG/TZ2/09.a.ii/M

A1 for correct shape

A1 for correct vertical asymptotes

A1 for correct implied horizontal asymptote

A1 for correct maximum point

[??? marks]

a.ii.

M17/5/MATHL/HP1/ENG/TZ2/09.a.iii/M

A1 for reflecting negative branch from (ii) in the x -axis

A1 for correctly labelled minimum point

[2 marks]

a.iii.

EITHER

attempt at integration by parts     (M1)

( x 2 a 2 ) cos x d x = ( x 2 a 2 ) sin x 2 x sin x d x      A1A1

= ( x 2 a 2 ) sin x 2 [ x cos x + cos x d x ]      A1

= ( x 2 a 2 ) sin x + 2 x cos 2 sin x + c      A1

OR

( x 2 a 2 ) cos x d x = x 2 cos x d x a 2 cos x d x

attempt at integration by parts     (M1)

x 2 cos x d x = x 2 sin x 2 x sin x d x      A1A1

= x 2 sin x 2 [ x cos x + cos x d x ]      A1

= x 2 sin x + 2 x cos x 2 sin x

a 2 cos x d x = a 2 sin x

( x 2 a 2 ) cos x d x = ( x 2 a 2 ) sin x + 2 x cos x 2 sin x + c      A1

[5 marks]

b.

g ( x ) = x ( x 2 a 2 ) 1 2

g ( x ) = ( x 2 a 2 ) 1 2 + 1 2 x ( x 2 a 2 ) 1 2 ( 2 x )     M1A1A1

 

Note:     Method mark is for differentiating the product. Award A1 for each correct term.

 

g ( x ) = ( x 2 a 2 ) 1 2 + x 2 ( x 2 a 2 ) 1 2

both parts of the expression are positive hence g ( x ) is positive     R1

and therefore g is an increasing function (for | x | > a )     AG

[4 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.
[N/A]
c.



Consider the functions f and g defined on the domain  0 < x < 2 π by  f ( x ) = 3 cos 2 x and  g ( x ) = 4 11 cos x .

The following diagram shows the graphs of  y = f ( x ) and  y = g ( x )

Find the x -coordinates of the points of intersection of the two graphs.

[6]
a.

Find the exact area of the shaded region, giving your answer in the form  p π + q 3 , where p q Q .

[5]
b.

At the points A and B on the diagram, the gradients of the two graphs are equal.

Determine the y -coordinate of A on the graph of g .

[6]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

3 cos 2 x = 4 11 cos x

attempt to form a quadratic in  cos x      M1

3 ( 2 co s 2 x 1 ) = 4 11 cos x      A1

( 6 co s 2 x + 11 cos x 7 = 0 )

valid attempt to solve their quadratic     M1

( 3 cos x + 7 ) ( 2 cos x 1 ) = 0

cos x = 1 2      A1

x = π 3 , 5 π 3      A1A1

Note: Ignore any “extra” solutions.

[6 marks]

a.

consider (±)  π 3 5 π 3 ( 4 11 cos x 3 cos 2 x ) d x      M1

= ( ± ) [ 4 x 11 sin x 3 2 sin 2 x ] π 3 5 π 3      A1

Note: Ignore lack of or incorrect limits at this stage.

attempt to substitute their limits into their integral     M1

= 20 π 3 11 sin 5 π 3 3 2 sin 10 π 3 ( 4 π 3 11 sin π 3 3 2 sin 2 π 3 )

= 16 π 3 + 11 3 2 + 3 3 4 + 11 3 2 + 3 3 4

= 16 π 3 + 25 3 2      A1A1

[5 marks]

b.

attempt to differentiate both functions and equate     M1

6 sin 2 x = 11 sin x      A1

attempt to solve for x      M1

11 sin x + 12 sin x cos x = 0

sin x ( 11 + 12 cos x ) = 0

cos x = 11 12 ( or sin x = 0 )      A1

y = 4 11 ( 11 12 )      M1

y = 169 12 ( = 14 1 12 )      A1

[6 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.



A continuous random variable X has the probability density function

fx=2b-ac-ax-a,axc2b-ab-cb-x,c<xb0,otherwise.

The following diagram shows the graph of y=fx for axb.

Given that ca+b2, find an expression for the median of X in terms of a, b and c.

Markscheme

let m be the median


EITHER

attempts to find the area of the required triangle          M1

base is m-a          (A1)

and height is 2b-ac-am-a

area =12m-a×2b-ac-am-a  =m-a2b-ac-a         A1

 

OR

attempts to integrate the correct function          M1

am2b-ac-ax-adx

=2b-ac-a12x-a2am  OR  2b-ac-ax22-axam         A1A1

 

Note: Award A1 for correct integration and A1 for correct limits.

 

THEN

sets up (their) am2b-ac-ax-adx or area =12         M1

 

Note: Award M0A0A0M1A0A0 if candidates conclude that m>c and set up their area or sum of integrals =12.

 

m-a2b-ac-a=12

m=a±b-ac-a2         (A1)

 

as m>a, rejects m=a-b-ac-a2

so m=a+b-ac-a2         A1

  

[6 marks]

Examiners report

[N/A]



Consider the function f   defined by f ( x ) = e x sin x ,   0 x π .

The curvature at any point ( x ,   y ) on a graph is defined as κ = | d 2 y d x 2 | ( 1 + ( d y d x ) 2 ) 3 2 .

Show that the function f has a local maximum value when x = 3 π 4 .

[2]
c.

Find the x -coordinate of the point of inflexion of the graph of f .

[2]
d.

Sketch the graph of f , clearly indicating the position of the local maximum point, the point of inflexion and the axes intercepts.

[3]
e.

Find the area of the region enclosed by the graph of f and the x -axis.

The curvature at any point ( x ,   y ) on a graph is defined as κ = | d 2 y d x 2 | ( 1 + ( d y d x ) 2 ) 3 2 .

[6]
f.

Find the value of the curvature of the graph of f at the local maximum point.

[3]
g.

Find the value κ for x = π 2 and comment on its meaning with respect to the shape of the graph.

[2]
h.

Markscheme

d y d x = e 3 π 4 ( sin 3 π 4 + cos 3 π 4 ) = 0    R1

d 2 y d x 2 = 2 e 3 π 4 cos 3 π 4 < 0    R1

hence maximum at x = 3 π 4      AG

[2 marks]

c.

d 2 y d x 2 = 0 2 e x cos x = 0    M1

x = π 2    A1

 

Note: Award M1A0 if extra zeros are seen.

 

[2 marks]

d.

N16/5/MATHL/HP1/ENG/TZ0/11.e/M

correct shape and correct domain     A1

max at x = 3 π 4 , point of inflexion at x = π 2      A1

zeros at x = 0 and x = π      A1

 

Note: Penalize incorrect domain with first A mark; allow FT from (d) on extra points of inflexion.

 

[3 marks]

e.

EITHER

0 x e x sin x d x = [ e x sin x ] 0 π 0 π e x cos x d x    M1A1

0 π e x sin x d x = [ e x sin x ] 0 π ( [ e x cos x ] 0 x + 0 π e x sin x d x )    A1

OR

0 π e x sin x d x = [ e x cos x ] 0 π + 0 π e x cos x d x    M1A1

0 π e x sin x d x = [ e x cos x ] 0 π + ( [ e x sin x ] 0 π 0 π e x sin x d x )    A1

THEN

0 π e x sin x d x = 1 2 ( [ e x sin x ] 0 x [ e x cos x ] 0 x )    M1A1

0 π e x sin x d x = 1 2 ( e x + 1 )    A1

[6 marks]

f.

d y d x = 0    (A1)

  d 2 y d x 2 = 2 e 3 π 4 cos 3 π 4 = 2 e 3 π 4 (A1)

κ = | 2 e 3 π 4 | 1 = 2 e 3 π 4    A1

[3 marks]

g.

κ = 0    A1

the graph is approximated by a straight line     R1

[2 marks]

h.

Examiners report

[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.
[N/A]
h.



Let  f ( x ) = 2 3 x 5 2 x 3 , x R , x 0 .

The graph of  y = f ( x )  has a local maximum at A. Find the coordinates of A.

[5]
a.

Show that there is exactly one point of inflexion, B, on the graph of  y = f ( x ) .

[5]
b.i.

The coordinates of B can be expressed in the form B ( 2 a , b × 2 3 a ) where a, b Q . Find the value of a and the value of b.

[3]
b.ii.

Sketch the graph of  y = f ( x ) showing clearly the position of the points A and B.

[4]
c.

Markscheme

attempt to differentiate      (M1)

f ( x ) = 3 x 4 3 x      A1

Note: Award M1 for using quotient or product rule award A1 if correct derivative seen even in unsimplified form, for example  f ( x ) = 15 x 4 × 2 x 3 6 x 2 ( 2 3 x 5 ) ( 2 x 3 ) 2 .

3 x 4 3 x = 0      M1

x 5 = 1 x = 1      A1

A ( 1 , 5 2 )      A1

[5 marks]

a.

f ( x ) = 0      M1

f ( x ) = 12 x 5 3 ( = 0 )      A1

Note: Award A1 for correct derivative seen even if not simplified.

x = 4 5 ( = 2 2 5 )      A1

hence (at most) one point of inflexion      R1

Note: This mark is independent of the two A1 marks above. If they have shown or stated their equation has only one solution this mark can be awarded.

f ( x )  changes sign at  x = 4 5 ( = 2 2 5 )       R1

so exactly one point of inflexion

[5 marks]

b.i.

x = 4 5 = 2 2 5 ( a = 2 5 )       A1

f ( 2 2 5 ) = 2 3 × 2 2 2 × 2 6 5 = 5 × 2 6 5 ( b = 5 )      (M1)A1

Note: Award M1 for the substitution of their value for  x into  f ( x ) .

[3 marks]

b.ii.

A1A1A1A1

A1 for shape for x < 0
A1 for shape for x > 0
A1 for maximum at A
A1 for POI at B.

Note: Only award last two A1s if A and B are placed in the correct quadrants, allowing for follow through.

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.



By using the substitution u=secx or otherwise, find an expression for 0π3secnxtanxdx in terms of n, where n is a non-zero real number.

Markscheme

METHOD 1

u=secxdu=secxtanxdx         (A1)

attempts to express the integral in terms of u         M1

12un-1du         A1

=1nun12  (=1nsecnx0π3)          A1

 

Note: Condone the absence of or incorrect limits up to this point.

 

=2n-1nn         M1

=2n-1n          A1

 

Note: Award M1 for correct substitution of their limits for u into their antiderivative for u (or given limits for x into their antiderivative for x).

 

METHOD 2

secnxtanxdx=secn-1xsecxtanxdx         (A1)

applies integration by inspection         (M1)

=1nsecnx0π3          A2

 

Note: Award A2 if the limits are not stated.

 

=1nsecnπ3-secn0         M1

 

Note: Award M1 for correct substitution into their antiderivative.

 

=2n-1n          A1

  

[6 marks]

Examiners report

[N/A]



The continuous random variable X has probability density function

fx=k4-3x2,0x1    0,otherwise.

Find the value of k.

[4]
a.

Find E(X).

[4]
b.

Markscheme

attempt to integrate k4-3x2            (M1)

=k13arcsin32x            A1

Note: Award (M1)A0 for arcsin32x.
Condone absence of k up to this stage.

 

equating their integrand to 1             M1

k13arcsin32x01=1

k=33π            A1

 

[4 marks]

a.

E(X)=33π01x4-3x2dx            A1


Note: Condone absence of limits if seen at a later stage.


EITHER

attempt to integrate by inspection            (M1)

=33π×-16-6x4-3x2-12dx

=33π-134-3x201            A1


Note: Condone the use of k up to this stage.


OR

for example, u=4-3x2dudx=-6x


Note: Other substitutions may be used. For example u=-3x2.

=-32π41u-12du            M1


Note:
Condone absence of limits up to this stage.

=-32π2u41            A1


Note: Condone the use of k up to this stage.


THEN

=3π            A1


Note:
Award A0M1A1A0 for their k-134-3x2 or k-2u for working with incorrect or no limits.

 

[4 marks]

b.

Examiners report

Most candidates who attempted part (a) knew that the integrand must be equated to 1 and only a small proportion of these managed to recognize the standard integral involved here. The effect of 3 in 3x2 was missed by many resulting in very few completely correct answers for this part. Part (b) proved to be challenging for vast majority of the candidates and was poorly done in general. Stronger candidates who made good progress in part (a) were often successful in part (b) as well. Most candidates used a substitution, however many struggled to make progress using this approach. Often when using a substitution, the limits were unchanged. If the function was re-written in terms of x, this did not result in an error in the final answer.

a.
[N/A]
b.



A function f is defined by fx=x1-x2 where -1x1.

The graph of y=f(x) is shown below.

Show that f is an odd function.

[2]
a.

The range of f is ayb, where a, b.

Find the value of a and the value of b.

[6]
b.

Markscheme

attempts to replace x with -x        M1

f-x=-x1--x2

=-x1--x2=-fx         A1

 

Note: Award M1A1 for an attempt to calculate both f-x and -f-x independently, showing that they are equal.
Note: Award M1A0 for a graphical approach including evidence that either the graph is invariant after rotation by 180° about the origin or the graph is invariant after a reflection in the y-axis and then in the x-axis (or vice versa).

 

so f is an odd function         AG

  

[2 marks]

a.

attempts both product rule and chain rule differentiation to find f'x        M1

f'x=x×12×-2x×1-x2-12+1-x212×1 =1-x2-x21-x2         A1

=1-2x21-x2

sets their f'x=0        M1

x=±12         A1

attempts to find at least one of f±12         (M1)

 

Note: Award M1 for an attempt to evaluate fx at least at one of their f'x=0  roots.

 

a=-12  and b=12         A1

 

Note: Award A1 for -12y12.

  

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Consider the function defined by fx=kx-5x-k, where x\k and k25

Consider the case where k=3.

State the equation of the vertical asymptote on the graph of y=f(x).

[1]
a.

State the equation of the horizontal asymptote on the graph of y=f(x).

[1]
b.

Use an algebraic method to determine whether f is a self-inverse function.

[4]
c.

Sketch the graph of y=f(x), stating clearly the equations of any asymptotes and the coordinates of any points of intersections with the coordinate axes.

[3]
d.

The region bounded by the x-axis, the curve y=f(x), and the lines x=5 and x=7 is rotated through 2π about the x-axis. Find the volume of the solid generated, giving your answer in the form π(a+b ln2) , where a, b.

[6]
e.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

x=k      A1


[1 mark]

a.

y=k      A1


[1 mark]

b.

METHOD 1

ffx=kkx-5x-k-5kx-5x-k-k        M1

=kkx-5-5x-kkx-5-kx-k        A1

=k2x-5k-5x+5kkx-5-kx+k2

=k2x-5xk2-5        A1

=xk2-5k2-5

=x

ffx=x , (hence f is self-inverse)        R1


Note:
The statement f(f(x))=x could be seen anywhere in the candidate’s working to award R1.

 

METHOD 2

fx=kx-5x-k

x=ky-5y-k        M1


Note:
Interchanging x and y can be done at any stage.


xy-k=ky-5        A1

xy-xk=ky-5

xy-ky=xk-5

yx-k=kx-5        A1

y=f-1x=kx-5x-k  (hence f is self-inverse)        R1


[4 marks]

c.

attempt to draw both branches of a rectangular hyperbola        M1

x=3 and y=3        A1

0, 53 and 53, 0        A1


[3 marks]

d.

METHOD 1

volume=π573x-5x-32dx       (M1)

EITHER

attempt to express 3x-5x-3 in the form p+qx-3       M1

3x-5x-3=3+4x-3       A1

OR

attempt to expand 3x-5x-32 or 3x-52 and divide out       M1

3x-5x-32=9+24x-56x-32       A1

THEN

3x-5x-32=9+24x-3+16x-32       A1

volume=π579+24x-3+16x-32dx

=π9x+24lnx-3-16x-357       A1

=π63+24ln4-4-45+24ln2-8

=π22+24ln2       A1

 

METHOD 2

volume=π573x-5x-32dx       (M1)

substituting u=x-3dudx=1       A1

3x-5=3u+3-5=3u+4

volume=π243u+4u2du       M1

=π249+16u2+24udu       A1

=π9u-16u+24lnu24       A1


Note: Ignore absence of or incorrect limits seen up to this point.


=π22+24ln2       A1


[6 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.



The curve C is given by the equation y = x tan ( π x y 4 ) .

At the point (1, 1) , show that  d y d x = 2 + π 2 π .

[5]
a.

Hence find the equation of the normal to C at the point (1, 1).

[2]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt to differentiate implicitly     M1

d y d x = x se c 2 ( π x y 4 ) [ ( π 4 x d y d x + π 4 y ) ] + tan ( π x y 4 )      A1A1

Note: Award A1 for each term.

attempt to substitute x = 1 , y = 1 into their equation for  d y d x      M1

d y d x = π 2 d y d x + π 2 + 1

d y d x ( 1 π 2 ) = π 2 + 1      A1

d y d x = 2 + π 2 π      AG

[5 marks]

a.

attempt to use gradient of normal  = 1 d y d x        (M1)

= π 2 π + 2

so equation of normal is  y 1 = π 2 π + 2 ( x 1 ) or  y = π 2 π + 2 x + 4 π + 2        A1

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Consider the function f ( x ) = 1 x 2 + 3 x + 2 ,   x R ,   x 2 ,   x 1 .

Express x 2 + 3 x + 2 in the form ( x + h ) 2 + k .

[1]
a.i.

Factorize x 2 + 3 x + 2 .

[1]
a.ii.

Sketch the graph of f ( x ) , indicating on it the equations of the asymptotes, the coordinates of the y -intercept and the local maximum.

[5]
b.

Hence find the value of p if 0 1 f ( x ) d x = ln ( p ) .

[4]
d.

Sketch the graph of y = f ( | x | ) .

[2]
e.

Determine the area of the region enclosed between the graph of y = f ( | x | ) , the x -axis and the lines with equations x = 1 and x = 1 .

[3]
f.

Markscheme

x 2 + 3 x + 2 = ( x + 3 2 ) 2 1 4      A1

[1 mark]

a.i.

x 2 + 3 x + 2 = ( x + 2 ) ( x + 1 )      A1

[1 mark]

a.ii.

M17/5/MATHL/HP1/ENG/TZ1/B11.b/M

A1 for the shape

A1 for the equation y = 0

A1 for asymptotes x = 2 and x = 1

A1 for coordinates ( 3 2 ,   4 )

A1 y -intercept ( 0 ,   1 2 )

[5 marks]

b.

0 1 1 x + 1 1 x + 2 d x

= [ ln ( x + 1 ) ln ( x + 2 ) ] 0 1      A1

= ln 2 ln 3 ln 1 + ln 2      M1

= ln ( 4 3 )      M1A1

p = 4 3

[4 marks]

d.

M17/5/MATHL/HP1/ENG/TZ1/B11.e/M

symmetry about the y -axis     M1

correct shape     A1

 

Note:     Allow FT from part (b).

 

[2 marks]

e.

2 0 1 f ( x ) d x      (M1)(A1)

= 2 ln ( 4 3 )      A1

 

Note:     Do not award FT from part (e).

 

[3 marks]

f.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
d.
[N/A]
e.
[N/A]
f.



Let  y = arccos ( x 2 )

Find  d y d x .

[2]
a.

Find 0 1 arccos ( x 2 ) d x .

[7]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

y = arccos ( x 2 ) d y d x = 1 2 1 ( x 2 ) 2 ( = 1 4 x 2 )     M1A1

Note: M1 is for use of the chain rule.

[2 marks]

a.

attempt at integration by parts     M1

u = arccos ( x 2 ) d u d x = 1 4 x 2

d v d x = 1 v = x      (A1)

0 1 arccos ( x 2 ) d x = [ x arccos ( x 2 ) ] 0 1 + 0 1 1 4 x 2 d x       A1

using integration by substitution or inspection      (M1)

[ x arccos ( x 2 ) ] 0 1 + [ ( 4 x 2 ) 1 2 ] 0 1       A1

Note: Award A1 for  ( 4 x 2 ) 1 2  or equivalent.

Note: Condone lack of limits to this point.

attempt to substitute limits into their integral     M1

= π 3 3 + 2      A1

[7 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Let fx=1+x for x>-1.

Show that f''x=-141+x3.

[3]
a.

Use mathematical induction to prove that fnx=-14n-12n-3!n-2!1+x12-n for n, n2.

[9]
b.

Let gx=emx, m.

Consider the function h defined by hx=fx×gx for x>-1.

It is given that the x2 term in the Maclaurin series for h(x) has a coefficient of 74.

Find the possible values of m.

[8]
c.

Markscheme

attempt to use the chain rule            M1

f'x=121+x-12         A1

f''x=-141+x-32         A1

=-141+x3         AG

 

Note: Award M1A0A0 for f'x=11+x or equivalent seen

  

[3 marks]

a.

let n=2

f''x=-141+x3=-1411!0!1+x12-2         R1

 

Note: Award R0 for not starting at n=2. Award subsequent marks as appropriate.

 

assume true for n=k, (so fkx=-14k-12k-3!k-2!1+x12-k)       M1

 

Note: Do not award M1 for statements such as “let n=k” or “n=k is true”. Subsequent marks can still be awarded.

 

consider n=k+1

LHS=fk+1x=dfkxdx            M1

=-14k-12k-3!k-2!12-k1+x12-k-1 (or equivalent)         A1

 

EITHER

RHS=fk+1x=-14k2k-1!k-1!1+x12-k-1 (or equivalent)         A1

=-14k2k-12k-22k-3!k-1k-2!1+x12-k-1        A1

 

Note: Award A1 for 2k-1!k-1!=2k-12k-22k-3!k-1k-2!=22k-12k-3!k-2!

 

=-14-14k-12k-12k-22k-3!k-1k-2!1+x12-k-1        A1

=-12-14k-12k-12k-3!k-2!1+x12-k-1

 

Note: Award A1 for leading coefficient of -14.

 

=12-k-14k-12k-3!k-2!1+x12-k-1        A1

 

OR

Note: The following A marks can be awarded in any order.

 

=-14k-12k-3!k-2!1-2k21+x12-k-1

=-12-14k-12k-12k-3!k-2!1+x12-k-1        A1

 

Note: Award A1 for isolating (2k1) correctly.

 

=-12-14k-12k-1!2k-2k-2!1+x12-k-1        A1

 

Note: Award A1 for multiplying top and bottom by (k1) or 2(k1).

 

=-14-14k-12k-1!k-1k-2!1+x12-k-1        A1

 

Note: Award A1 for leading coefficient of -14.

 

=-14k2k-1!k-1!1+x12-k-1        A1

 

=-14k+1-12k+1-3!k+1-2!1+x12-k+1=RHS

 

THEN

since true for n=2, and true for n=k+1 if true for n=k, the statement is true for all, n, n2  by mathematical induction           R1

 

Note: To obtain the final R1, at least four of the previous marks must have been awarded.

 

[9 marks]

b.

METHOD 1

hx=1+xemx

using product rule to find h'x        (M1)

h'x=1+xmemx+121+xemx         A1

h''x=m1+xmemx+121+xemx+121+xmemx-141+x3emx         A1

substituting x=0 into h''x       M1

h''0=m2+12m+12m-14=m2+m-14         A1

hx=h0+xh'0+x22!h''0+

equating x2 coefficient to 74       M1

h''02!=74 h''0=72

4m2+4m-15=0         A1

2m+52m-3=0

m=-52  or  m=32         A1

 

METHOD 2

EITHER

attempt to find f0, f'0, f''0        (M1)

fx=1+x12                    f0=1

f'x=121+x-12            f'0=12

f''x=-141+x-32      f''0=-14

fx=1+12x-18x2+         A1

 

OR

attempt to apply binomial theorem for rational exponents        (M1)

fx=1+x12=1+12x+12-122!x2

fx=1+12x-18x2+         A1

 

THEN

gx=1+mx+m22x2+        (A1)

hx=1+12x-18x2+1+mx+m22x2+        (M1)

coefficient of x2 is m22+m2-18         A1

attempt to set equal to 74 and solve             M1

m22+m2-18=74

4m2+4m-15=0          A1

2m+52m-3=0

m=-52  or  m=32         A1

 

METHOD 3

g'x=memx and g''x=m2emx        (A1)

hx=h0+xh'0+x22!h''0+

equating x2 coefficient to 74       M1

h''02!=74 h''0=72

using product rule to find h'x and h''x        (M1)

h'x=fxg'x+f'xgx

h''x=fxg''x+2f'xg'x+f''xgx         A1

substituting x=0 into h''x       M1

h''0=f0g''0+2g'0f'0+g0f''0

=1×m2+2m×12+1×-14  =m2+m-14         A1

4m2+4m-15=0          A1

2m+52m-3=0

m=-52  or  m=32         A1

 

[8 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.



Consider  f ( x ) = 2 x 4 x 2 1 1 < x < 1 .

For the graph of  y = f ( x ) ,

Find  f ( x ) .

[2]
a.i.

Show that, if  f ( x ) = 0 , then  x = 2 3 .

[3]
a.ii.

find the coordinates of the y -intercept.

[1]
b.i.

show that there are no x -intercepts.

[2]
b.ii.

sketch the graph, showing clearly any asymptotic behaviour.

[2]
b.iii.

Show that 3 x + 1 1 x 1 = 2 x 4 x 2 1 .

[2]
c.

The area enclosed by the graph of y = f ( x ) and the line y = 4 can be expressed as ln v . Find the value of v .

[7]
d.

Markscheme

attempt to use quotient rule (or equivalent)       (M1)

f ( x ) = ( x 2 1 ) ( 2 ) ( 2 x 4 ) ( 2 x ) ( x 2 1 ) 2        A1

= 2 x 2 + 8 x 2 ( x 2 1 ) 2

[2 marks]

a.i.

f ( x ) = 0

simplifying numerator (may be seen in part (i))       (M1)

x 2 4 x + 1 = 0  or equivalent quadratic equation       A1

 

EITHER

use of quadratic formula

x = 4 ± 12 2        A1

 

OR

use of completing the square

( x 2 ) 2 = 3        A1

 

THEN

x = 2 3   (since  2 + 3  is outside the domain)       AG

 

Note: Do not condone verification that x = 2 3 f ( x ) = 0 .

Do not award the final A1 as follow through from part (i).

 

[3 marks]

a.ii.

(0, 4)       A1

[1 mark]

b.i.

2 x 4 = 0 x = 2       A1

outside the domain       R1

[2 marks]

b.ii.

      A1A1

award A1 for concave up curve over correct domain with one minimum point in the first quadrant
award A1 for approaching x = ± 1 asymptotically

[2 marks]

b.iii.

valid attempt to combine fractions (using common denominator)      M1

3 ( x 1 ) ( x + 1 ) ( x + 1 ) ( x 1 )       A1

= 3 x 3 x 1 x 2 1

= 2 x 4 x 2 1       AG

[2 marks]

c.

f ( x ) = 4 2 x 4 = 4 x 2 4       M1

       ( x = 0   or)   x = 1 2       A1

 

area under the curve is  0 1 2 f ( x ) d x       M1

= 0 1 2 3 x + 1 1 x 1 d x

Note: Ignore absence of, or incorrect limits up to this point.

 

= [ 3 ln | x + 1 | ln | x 1 | ] 0 1 2       A1

= 3 ln 3 2 ln 1 2 ( 0 )

= ln 27 4       A1

area is  2 0 1 2 f ( x ) d x   or  0 1 2 4 d x 0 1 2 f ( x ) d x       M1

= 2 ln 27 4

= ln 4 e 2 27       A1

( v = 4 e 2 27 )

 

[7 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.
[N/A]
d.



Given that  2 2 f ( x ) d x = 10 and 0 2 f ( x ) d x = 12 , find

2 0 ( f ( x )  + 2 ) d x .

[4]
a.

2 0 f ( x  + 2 ) d x .

[2]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

2 0 f ( x ) d x = 10 12 = 2      (M1)(A1)

2 0 2 d x = [ 2 x ] 2 0 = 4      A1

2 0 ( f ( x )  + 2 ) d x = 2      A1

[4 marks]

a.

2 0 f ( x  + 2 ) d x = 0 2 f ( x ) d x     (M1)

= 12     A1

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Using the substitution  u = sin x , find co s 3 x d x sin x .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

u = sin x d u = cos x d x        (A1)

valid attempt to write integral in terms of u and d u       M1

co s 3 x d x sin x = ( 1 u 2 ) d u u       A1

= ( u 1 2 u 3 2 ) d u

= 2 u 1 2 2 u 5 2 5 ( + c )        (A1)

= 2 sin x 2 ( sin x ) 5 5 ( + c )  or equivalent       A1

[5 marks]

Examiners report

[N/A]



The function f is defined by f(x)=exsinx, where x.

The function g is defined by g(x)=excosx, where x.

Find the Maclaurin series for f(x) up to and including the x3 term.

[4]
a.

Hence, find an approximate value for 01ex2sinx2dx.

[4]
b.

Show that g(x) satisfies the equation g''(x)=2(g'(x)-g(x)).

[4]
c.i.

Hence, deduce that g4x=2g'''x-g''x.

[1]
c.ii.

Using the result from part (c), find the Maclaurin series for g(x) up to and including the x4 term.

[5]
d.

Hence, or otherwise, determine the value of limx0excosx-1-xx3.

[3]
e.

Markscheme

METHOD 1

recognition of both known series          (M1)

ex=1+x1!+x22!+  and sinx=x-x33!+x55!+

attempt to multiply the two series up to and including x3 term           (M1)

exsinx=1+x1!+x22!+x-x33!+x55!+

=x-x33!+x2+x32!+           (A1)

exsinx=x+x2+13x3+          A1

 

METHOD 2

fx=exsinx

f'x=excosx+exsinx          A1

f''x=excosx-exsinx+exsinx+excosx =2excosx

f'''x=2excosx-2exsinx

f''x=2excosx  and  f'''x=2excosx-sinx          A1

substitute x=0 into f or its derivatives to obtain Maclaurin series           (M1)

exsinx=0+x1!×1+x22!×2+x33!×2+

exsinx=x+x2+13x3+          A1

 

[4 marks]

a.

ex2sinx2=x2+x4+13x6+           (A1)

substituting their expression and attempt to integrate              M1

01ex2sinx2dx01x2+x4+13x6dx

 

Note: Condone absence of limits up to this stage.

 

=x33+x55+x72101          A1

=61105          A1

 

[4 marks]

b.

attempt to use product rule at least once             M1

g'(x)=excosx-exsinx          A1

g''(x)=excosx-exsinx-exsinx-excosx=-2exsinx          A1


EITHER

2g'(x)-gx=2excosx-exsinx-excosx=-2exsinx          A1


OR

g''(x)=2excosx-exsinx-excosx          A1


THEN

g''(x)=2g'(x)-gx          AG

 

Note: Accept working with each side separately to obtain -2exsinx.

 

[4 marks]

c.i.

g'''(x)=2g''(x)-g'x          A1

g4x=2g'''x-g''x          AG

 

Note: Accept working with each side separately to obtain -4excosx.

 

[1 mark]

c.ii.

attempt to substitute x=0 into a derivative          (M1)

g0=1, g'0=1, g''0=0          A1

g'''0=-2, g40=-4           (A1)

attempt to substitute into Maclaurin formula          (M1)

gx=1+x-23!x3-44!x4+=1+x-13x3-16x4+          A1

 

Note: Do not award any marks for approaches that do not use the part (c) result.

 

[5 marks]

d.

METHOD 1

limx0excosx-1-xx3=limx01+x-13x3-16x4+-1-xx3         M1

=limx0-13-16x+           (A1)

=-13          A1

 

Note: Condone the omission of + in their working.

 

METHOD 2

limx0excosx-1-xx3=00 indeterminate form, attempt to apply l'Hôpital's rule         M1

=limx0excosx-exsinx-13x2=limx0g'x-13x2

=00, using l'Hôpital's rule again

=limx0-2exsinx6x=limx0g''x6x

=00, using l'Hôpital's rule again

=limx0-2exsinx-2excosx6=limx0g'''x6          A1

=-13          A1

 

[3 marks]

e.

Examiners report

Part (a) was well answered using both methods. A number failed to see the connection between parts (a) and (b). Far too often, a candidate could not add three fractions together in part (b). There were many good responses to part (c) with candidates showing results on both sides are equal. A number of candidates failed to use the result from (c) in part (d). There were some good responses to part (e), with candidates working successfully with the series from (d) or applying l'Hôpital's rule. In particular, some responses were missing the appropriate limit notation and candidates following method 2 did not always show that the initial expression was of an indeterminate form before applying l'Hôpital's rule. Many candidates did not attempt parts (d) and (e).

a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.
[N/A]
e.



The graph of y = f ( x ) , 0 ≤ x  ≤ 5 is shown in the following diagram. The curve intercepts the x -axis at (1, 0) and (4, 0) and has a local minimum at (3, −1).

The shaded area enclosed by the curve y = f ( x ) , the x -axis and the y -axis is 0.5. Given that f ( 0 ) = 3 ,

The area enclosed by the curve y = f ( x ) and the x -axis between x = 1 and x = 4 is 2.5 .

Write down the x -coordinate of the point of inflexion on the graph of  y = f ( x ) .

[1]
a.

find the value of  f ( 1 ) .

[3]
b.

find the value of  f ( 4 ) .

[2]
c.

Sketch the curve y = f ( x ) , 0 ≤ x ≤ 5 indicating clearly the coordinates of the maximum and minimum points and any intercepts with the coordinate axes.

[3]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

3     A1

[1 mark]

a.

attempt to use definite integral of  f ( x )         (M1)

0 1 f ( x ) d x = 0.5

f ( 1 ) f ( 0 ) = 0.5         (A1)

f ( 1 ) = 0.5 + 3

= 3.5      A1

[3 marks]

b.

1 4 f ( x ) d x = 2.5        (A1)

Note: (A1) is for −2.5.

f ( 4 ) f ( 1 ) = 2.5

f ( 4 ) = 3.5 2.5

= 1      A1

[2 marks]

c.

    A1A1A1

A1 for correct shape over approximately the correct domain
A1 for maximum and minimum (coordinates or horizontal lines from 3.5 and 1 are required),
A1 for y -intercept at 3

[3 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.



A function f is defined by fx=3x2+2, x.

The region R is bounded by the curve y=fx, the x-axis and the lines x=0 and x=6. Let A be the area of R.

The line x=k divides R into two regions of equal area.

Let m be the gradient of a tangent to the curve y=fx.

Sketch the curve y=fx, clearly indicating any asymptotes with their equations and stating the coordinates of any points of intersection with the axes.

[4]
a.

Show that A=2π2.

[4]
b.

Find the value of k.

[4]
c.

Show that m=-6xx2+22.

[2]
d.

Show that the maximum value of m is 273223.

[7]
e.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

a curve symmetrical about the y-axis with correct concavity that has a local maximum point on the positive y-axis        A1

a curve clearly showing that y0 as x±        A1

0,32        A1

horizontal asymptote y=0 (x-axis)        A1

 

[4 marks]

a.

attempts to find 3x2+2dx        (M1)

=32arctanx2        A1

 

Note: Award M1A0 for obtaining k arctanx2 where k32.

Note: Condone the absence of or use of incorrect limits to this stage.

 

=32arctan3-arctan0        (M1)

=32×π3=π2        A1

A=2π2        AG

 

[4 marks]

b.

METHOD 1

EITHER

0k3x2+2dx=2π4

32arctank2=2π4        (M1)

 

OR

k63x2+2dx=2π4

32arctan3-arctank2=2π4        (M1)

arctan3-arctank2=π6

 

THEN

arctank2=π6        A1

k2=tanπ6=13        A1

k=63=23        A1

 

METHOD 2

0k3x2+2dx=k63x2+2dx

32arctank2=32arctan3-arctank2        (M1)

arctank2=π6        A1

k2=tanπ6=13        A1

k=63=23        A1

 

[4 marks]

c.

attempts to find ddx3x2+2        (M1)

=3-12xx2+2-2        A1

so m=-6xx2+22        AG

 

[2 marks]

d.

attempts product rule or quotient rule differentiation        M1

EITHER

dmdx=-6x-22xx2+2-3+x2+2-2-6        A1

OR

dmdx=x2+22-6--6x22xx2+2x2+24        A1

 

Note: Award A0 if the denominator is incorrect. Subsequent marks can be awarded.

 

THEN

attempts to express their dmdx as a rational fraction with a factorized numerator        M1

dmdx=6x2+23x2-2x2+24=63x2-2x2+23

attempts to solve their dmdx=0 for x        M1

x=±23        A1

from the curve, the maximum value of m occurs at x=-23        R1

(the minimum value of m occurs at x=23)

 

Note: Award R1 for any equivalent valid reasoning.

 

maximum value of m is -6-23-232+22        A1

leading to a maximum value of 273223        AG

 

[7 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.



Show that lo g r 2 x = 1 2 lo g r x  where  r , x R + .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

lo g r 2 x = lo g r x lo g r r 2 ( = lo g r x 2 lo g r r )      M1A1

= lo g r x 2      AG

[2 marks]

 

METHOD 2

lo g r 2 x = 1 lo g x r 2      M1

= 1 2 lo g x r      A1

= lo g r x 2      AG

[2 marks]

 

Examiners report

[N/A]



The folium of Descartes is a curve defined by the equation x 3 + y 3 3 x y = 0 , shown in the following diagram.

N17/5/MATHL/HP1/ENG/TZ0/07

Determine the exact coordinates of the point P on the curve where the tangent line is parallel to the y -axis.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

x 3 + y 3 3 x y = 0

3 x 2 + 3 y 2 d y d x 3 x d y d x 3 y = 0     M1A1

 

Note:     Differentiation wrt y is also acceptable.

 

d y d x = 3 y 3 x 2 3 y 2 3 x   ( = y x 2 y 2 x )     (A1)

 

Note:     All following marks may be awarded if the denominator is correct, but the numerator incorrect.

 

y 2 x = 0     M1

EITHER

x = y 2

y 6 + y 3 3 y 3 = 0     M1A1

y 6 2 y 3 = 0

y 3 ( y 3 2 ) = 0

( y 0 ) y = 2 3     A1

x = ( 2 3 ) 2   ( = 4 3 )     A1

OR

x 3 + x y 3 x y = 0     M1

x ( x 2 2 y ) = 0

x 0 y = x 2 2     A1

y 2 = x 4 4

x = x 4 4

x ( x 3 4 ) = 0

( x 0 ) x = 4 3     A1

y = ( 4 3 ) 2 2 = 2 3     A1

[8 marks]

Examiners report

[N/A]



A particle moves along a straight line. Its displacement, s metres, at time t seconds is given by s = t + cos 2 t ,   t 0 . The first two times when the particle is at rest are denoted by t 1 and t 2 , where t 1 < t 2 .

Find t 1 and t 2 .

[5]
a.

Find the displacement of the particle when t = t 1

[2]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

s = t + cos 2 t

d s d t = 1 2 sin 2 t      M1A1

= 0      M1

sin 2 t = 1 2

t 1 = π 12 ( s ) ,   t 2 = 5 π 12 ( s )      A1A1

 

Note:     Award A0A0 if answers are given in degrees.

 

[5 marks]

a.

s = π 12 + cos π 6 ( s = π 12 + 3 2 ( m ) )      A1A1

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Use l’Hôpital’s rule to determine the value of

limx02sinx-sin2xx3.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

using l’Hôpital’s rule,

limx02sinx-sin2xx3=limx02cosx-2cos2x3x2        M1A1

=limx0-2sinx+4sin2x6x       (M1)A1

=limx0-2cosx+8cos2x6       A1

=1       A1


[6 marks]

Examiners report

[N/A]



Write  2 x x 2 in the form  a ( x h ) 2 + k , where  a h k R .

[2]
a.

Hence, find the value of  1 2 3 2 1 2 x x 2 d x .

[5]
b.

Markscheme

attempt to complete the square or multiplication and equating coefficients       (M1)

2 x x 2 = ( x 1 ) 2 + 1       A1

a = 1 h = 1 k = 1

[2 marks]

a.

use of their identity from part (a)  ( 1 2 3 2 1 1 ( x 1 ) 2 d x )         (M1)

= [ arc sin ( x 1 ) ] 1 2 3 2 or  [ arc sin ( u ) ] 1 2 1 2        A1

Note: Condone lack of, or incorrect limits up to this point.

= arc sin ( 1 2 ) arc sin ( 1 2 )         (M1)

= π 6 ( π 6 )        (A1)

= π 3        A1

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Consider the expression 11+ax-1-x where a, a0.

The binomial expansion of this expression, in ascending powers of x, as far as the term in x2 is 4bx+bx2, where b.

Find the value of a and the value of b.

[6]
a.

State the restriction which must be placed on x for this expansion to be valid.

[1]
b.

Markscheme

attempt to expand binomial with negative fractional power                 (M1)

11+ax=1+ax-12=1-ax2+3a2x28+                A1

1-x=1-x12=1-x2-x28+                A1

11+ax-1-x=1-a2x+3a2+18x2+

attempt to equate coefficients of x or x2                 (M1)

x :  1-a2=4b;  x2 : 3a2+18=b

attempt to solve simultaneously                 (M1)

a=-13, b=16                A1

 

[6 marks]

a.

x<1              A1

 

[1 mark]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Using the substitution x = tan θ show that 0 1 1 ( x 2 + 1 ) 2 d x = 0 π 4 cos 2 θ d θ .

[4]
a.

Hence find the value of 0 1 1 ( x 2 + 1 ) 2 d x .

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

let x = tan θ

d x d θ = sec 2 θ      (A1)

1 ( x 2 + 1 ) 2 d x = sec 2 θ ( tan 2 θ + 1 ) 2 d θ      M1

 

Note:     The method mark is for an attempt to substitute for both x and d x .

 

= 1 sec 2 θ d θ (or equivalent)     A1

when x = 0 ,   θ = 0 and when x = 1 ,   θ = π 4     M1

0 π 4 cos 2 θ d θ     AG

[4 marks]

a.

( 0 1 1 ( x 2 + 1 ) 2 d x = 0 π 4 cos 2 θ d θ ) = 1 2 0 π 4 ( 1 + cos 2 θ ) d θ    M1

= 1 2 [ θ + sin 2 θ 2 ] 0 π 4      A1

= π 8 + 1 4      A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



A curve has equation 3 x 2 y 2 e x 1 = 2 .

Find an expression for d y d x  in terms of x and y .

[5]
a.

Find the equations of the tangents to this curve at the points where the curve intersects the line x = 1 .

[4]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt to differentiate implicitly     M1

3 ( 4 y d y d x + 2 y 2 ) e x 1 = 0    A1A1A1

 

Note: Award A1 for correctly differentiating each term.

 

d y d x = 3 e 1 x 2 y 2 4 y    A1

 

Note: This final answer may be expressed in a number of different ways.

 

[5 marks]

a.

3 2 y 2 = 2 y 2 = 1 2 y = ± 1 2    A1

d y d x = 3 2 1 2 ± 4 1 2 = ± 2 2    M1

at ( 1 ,   1 2 )  the tangent is y 1 2 = 2 2 ( x 1 )  and     A1

at ( 1 ,   1 2 )  the tangent is y + 1 2 = 2 2 ( x 1 )      A1

 

Note: These equations simplify to y = ± 2 2 x .

 

Note: Award A0M1A1A0 if just the positive value of y is considered and just one tangent is found.

 

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Find the value of 193x-5xdx.

Markscheme

3x-5xdx=3-5x-12dx             (A1)

3x-5xdx=3x-10x12+c             A1A1

substituting limits into their integrated function and subtracting             (M1)

39-10912-31-10112  OR  27-10×3-3-10

=4             A1

 

[5 marks]

Examiners report

A mixed response was noted for this question. Candidates who simplified the algebraic fraction before integrating were far more successful in gaining full marks in this question. Many candidates used other valid approaches such as integration by substitution and integration by parts with varying degrees of success. A small number of candidates substituted the limits without integrating.




A function f is defined by fx=1x2-2x-3, where x, x-1, x3.

A function g is defined by gx=1x2-2x-3, where x, x>3.

The inverse of g is g-1.

A function h is defined by hx=arctanx2, where x.

Sketch the curve y=f(x), clearly indicating any asymptotes with their equations. State the coordinates of any local maximum or minimum points and any points of intersection with the coordinate axes.

[6]
a.

Show that g-1x=1+4x2+xx.

[6]
b.i.

State the domain of g-1.

[1]
b.ii.

Given that hga=π4, find the value of a.

Give your answer in the form p+q2r, where p, q, r+.

[7]
c.

Markscheme

 

y-intercept 0,-13         A1


Note:
Accept an indication of -13 on the y-axis.


vertical asymptotes x=-1 and x=3          A1

horizontal asymptote y=0          A1

uses a valid method to find the x-coordinate of the local maximum point          (M1)


Note:
For example, uses the axis of symmetry or attempts to solve f'x=0.


local maximum point 1,-14          A1


Note:
Award (M1)A0 for a local maximum point at x=1 and coordinates not given.


three correct branches with correct asymptotic behaviour and the key features in approximately correct relative positions to each other          A1

 

[6 marks]

a.

x=1y2-2y-3           M1


Note: Award M1 for interchanging x and y (this can be done at a later stage).

 

EITHER

attempts to complete the square           M1

y2-2y-3=y-12-4          A1

x=1y-12-4

y-12-4=1xy-12=4+1x          A1

y-1=±4+1x =±4x+1x

 

OR

attempts to solve xy2-2xy-3x-1=0 for y         M1

y=--2x±-2x2+4x3x+12x         A1


Note:
Award A1 even if - (in ±) is missing


=2x±16x2+4x2x         A1

 

THEN

=1±4x2+xx         A1

y>3 and hence y=1-4x2+xx is rejected                R1 

 

Note: Award R1 for concluding that the expression for y must have the ‘+’ sign.
The R1 may be awarded earlier for using the condition x>3.

 

y=1+4x2+xx

g-1x=1+4x2+xx         AG

 

[6 marks]

b.i.

domain of g-1 is x>0         A1

 

[1 mark]

b.ii.

attempts to find hga          (M1)

hga=arctanga2   hga=arctan12a2-2a-3          (A1)

arctanga2=π4   arctan12a2-2a-3=π4

attempts to solve for ga         M1

ga=2  1a2-2a-3=2

 

EITHER

a=g-12         A1

attempts to find their g-12         M1

a=1+422+22         A1

 

Note: Award all available marks to this stage if x is used instead of a.


OR

2a2-4a-7=0         A1

attempts to solve their quadratic equation         M1

a=--4±-42+4274  =4±724         A1


Note: Award all available marks to this stage if x is used instead of a.


THEN

a=1+322  (as a>3)         A1

p=1, q=3, r=2

 

Note: Award A1 for a=1+1218  p=1, q=1, r=18

 

[7 marks]

c.

Examiners report

Part (a) was generally well done. It was pleasing to see how often candidates presented complete sketches here. Several decided to sketch using the reciprocal function. Occasionally, candidates omitted the upper branches or forgot to calculate the y-coordinate of the maximum.

Part (b): The majority of candidates knew how to start finding the inverse, and those who attempted completing the square or using the quadratic formula to solve for y made good progress (both methods equally seen). Otherwise, they got lost in the algebra. Very few explicitly justified the rejection of the negative root.

Part (c) was well done in general, with some algebraic errors seen in occasions.

a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.



Use the substitution  u = x 1 2  to find  d x x 3 2 + x 1 2 .

[4]
a.

Hence find the value of  1 2 1 9 d x x 3 2 + x 1 2 , expressing your answer in the form arctan q , where  q Q .

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

d u d x = 1 2 x 1 2  (accept  d u = 1 2 x 1 2 d x or equivalent)       A1

substitution, leading to an integrand in terms of  u      M1

2 u d u u 3 + u  or equivalent      A1

= 2 arctan  ( x ) ( + c )      A1

[4 marks]

 

a.

 

1 2 1 9 d x x 3 2 + x 1 2 = arctan 3 − arctan 1     A1

tan(arctan 3 − arctan 1) =  3 1 1 + 3 × 1       (M1)

tan(arctan 3 − arctan 1) =  1 2

arctan 3 − arctan 1 = arctan  1 2      A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



A camera at point C is 3 m from the edge of a straight section of road as shown in the following diagram. The camera detects a car travelling along the road at t = 0. It then rotates, always pointing at the car, until the car passes O, the point on the edge of the road closest to the camera.

A car travels along the road at a speed of 24 ms−1. Let the position of the car be X and let OĈX = θ.

Find d θ d t , the rate of rotation of the camera, in radians per second, at the instant the car passes the point O .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

let OX =  x

METHOD 1

d x d t = 24    (or −24)       (A1)

d θ d t = d x d t × d θ d x        (M1)

3 tan θ = x        A1

EITHER

3 se c 2 θ = d x d θ        A1

d θ d t = 24 3 se c 2 θ

attempt to substitute for θ = 0 into their differential equation       M1

OR

θ = arctan ( x 3 )

d θ d x = 1 3 × 1 1 + x 2 9        A1

d θ d t = 24 × 1 3 ( 1 + x 2 9 )

attempt to substitute for x = 0 into their differential equation       M1

THEN

d θ d t = 24 3 = 8   (rad s−1)       A1

Note: Accept −8 rad s−1.

 

METHOD 2

d x d t = 24    (or −24)       (A1)

3 tan θ = x        A1

attempt to differentiate implicitly with respect to t        M1

3 se c 2 θ × d θ d t = d x d t       A1

d θ d t = 24 3 se c 2 θ

attempt to substitute for θ = 0 into their differential equation       M1

d θ d t = 24 3 = 8 (rad s−1)       A1

Note: Accept −8 rad s−1.

Note: Can be done by consideration of CX, use of Pythagoras.

 

METHOD 3

let the position of the car be at time t be d 24 t from O       (A1)

tan θ = d 24 t 3 ( = d 3 8 t )        M1

Note: For  tan θ = 24 t 3 award A0M1 and follow through.

EITHER

attempt to differentiate implicitly with respect to t        M1

se c 2 θ d θ d t = 8        A1

attempt to substitute for θ = 0 into their differential equation       M1

OR

θ = arctan ( d 3 8 t )        M1

d θ d t = 8 1 + ( d 3 8 t ) 2        A1

at O,  t = d 24        A1

THEN

d θ d t = 8        A1

 

[6 marks]

Examiners report

[N/A]



Use l’Hôpital’s rule to determine the value of limx02xcosx25tanx.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

 attempts to apply l’Hôpital’s rule on limx02xcosx25tanx        M1

=limx02cosx2-4x2sinx25sec2x        M1A1A1

 

Note: Award M1 for attempting to use product and chain rule differentiation on the numerator, A1 for a correct numerator and A1 for a correct denominator. The awarding of A1 for the denominator is independent of the M1.

=25        A1

 

[5 marks]

Examiners report

[N/A]



The acceleration, ams-2, of a particle moving in a horizontal line at time t seconds, t0, is given by a=-(1+v) where vms-1 is the particle’s velocity and v>-1.

At t=0, the particle is at a fixed origin O and has initial velocity v0ms-1.

Initially at O, the particle moves in the positive direction until it reaches its maximum displacement from O. The particle then returns to O.

Let s metres represent the particle’s displacement from O and smax its maximum displacement from O.

Let v(T-k) represent the particle’s velocity k seconds before it reaches smax, where

v(T-k)=1+v0e-(T-k)-1.

Similarly, let v(T+k) represent the particle’s velocity k seconds after it reaches smax.

By solving an appropriate differential equation, show that the particle’s velocity at time t is given by v(t)=(1+v0)e-t-1.

[6]
a.

Show that the time T taken for the particle to reach smax satisfies the equation eT=1+v0.

[2]
b.i.

By solving an appropriate differential equation and using the result from part (b) (i), find an expression for smax in terms of v0.

[5]
b.ii.

By using the result to part (b) (i), show that vT-k=ek-1.

[2]
c.

Deduce a similar expression for v(T+k) in terms of k.

[2]
d.

Hence, show that vT-k+vT+k0.

[3]
e.

Markscheme

dvdt=-1+v         (A1)

1dt=-11+vdv  (or equivalent / use of integrating factor)        M1

t=-ln1+v+C        A1

 

EITHER

attempt to find C with initial conditions t=0, v=v0        M1

C=ln1+v0

t=ln1+v0-ln1+v

t=ln1+v01+vet=1+v01+v        A1

et1+v=1+v0

1+v=1+v0e-t        A1

vt=1+v0e-t-1        AG

 

OR

t-C=-ln1+vet-C=11+v

Attempt to find C with initial conditions t=0, v=v0        M1

e-C=11+v0C=ln1+v0

t-ln1+v0=-ln1+vt=ln1+v0-ln1+v

t=ln1+v01+vet=1+v01+v        A1

et1+v=1+v0

1+v=1+v0e-t        A1

vt=1+v0e-t-1        AG

 

OR

t-C=-ln1+ve-t+C=1+v        A1

ke-t-1=v

Attempt to find k with initial conditions t=0, v=v0        M1

k=1+v0

e-t1+v0=1+v        A1

vt=1+v0e-t-1        AG

 

Note: condone use of modulus within the ln function(s)

 

[6 marks]

a.

recognition that when t=T, v=0        M1

1+v0e-T-1=0e-T=11+v0        A1

eT=1+v0        AG

 

Note: Award M1A0 for substituting v0=eT-1 into v and showing that v=0.

 

[6 marks]

b.i.

st=vtdt =1+v0e-t-1dt        (M1)

=-1+v0e-t-t+D        A1

(t=0, s=0 so) D=1+v0        A1

st=-1+v0e-t-t+1+v0

at smax, eT=1+v0T=ln1+v0

Substituting into st=-1+v0e-t-t+1+v0        M1

smax=-1+v011+v0-ln1+v0+v0+1        A1

smax=v0-ln1+v0

 

[5 marks]

b.ii.

METHOD 1

vT-k=1+v0e-Tek-1        (M1)

=1+v011+v0ek-1        A1

=ek-1        AG

 

METHOD 2

vT-k=1+v0e-T-k-1

=eTe-T-k-1         M1

=eT-T+k-1        A1

=ek-1        AG

 

[2 marks]

c.

METHOD 1

vT+k=1+v0e-Te-k-1        (A1)

=e-k-1       A1

 

METHOD 2

vT+k=1+v0e-T+k-1        (A1)

        =eTe-T+k-1

=eT-T-k-1

=e-k-1       A1

 

[2 marks]

d.

METHOD 1

vT-k+vT+k=ek+e-k-2       A1

attempt to express as a square       M1

=ek2-e-k22 0       A1

so vT-k+vT+k0       AG

 

METHOD 2

vT-k+vT+k=ek+e-k-2       A1

Attempt to solve ddkek+e-k=0  k=0       M1

minimum value of 2, (when k=0), hence ek+e-k2       R1

so vT-k+vT+k0       AG

 

[3 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.
[N/A]
d.
[N/A]
e.



Use l’Hôpital’s rule to find limx0arctan2xtan3x.

Markscheme

attempt to differentiate numerator and denominator        M1

limx0arctan2xtan3x

=limx021+4x23sec23x        A1A1

 

Note: A1 for numerator and A1 for denominator. Do not condone absence of limits.

 

attempt to substitute x=0         (M1)

=23        A1

 

Note: Award a maximum of M1A1A0M1A1 for absence of limits.

 

[5 marks]

Examiners report

[N/A]



Consider the curves  C 1 and  C 2  defined as follows

C 1 : x y = 4 x > 0

C 2 : y 2 x 2 = 2 x > 0

Using implicit differentiation, or otherwise, find  d y d x  for each curve in terms of  x and  y .

[4]
a.

Let P( a , b ) be the unique point where the curves C 1 and C 2 intersect.

Show that the tangent to C 1 at P is perpendicular to the tangent to C 2 at P.

[2]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

C 1 : y + x d y d x = 0       (M1)

Note: M1 is for use of both product rule and implicit differentiation.

 

d y d x = y x       A1

Note: Accept  4 x 2

 

C 2 : 2 y d y d x 2 x = 0       (M1)

d y d x = x y       A1

Note: Accept  ± x 2 + x 2

 

[4 marks]

a.

substituting  a and  b for  x and  y       M1

product of gradients at P is  ( b a ) ( a b ) = 1 or equivalent reasoning       R1

Note: The R1 is dependent on the previous M1

 

so tangents are perpendicular       AG

 

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Solve the differential equation dydx=ln2xx2-2yx, x>0, given that y=4 at x=12.

Give your answer in the form y=fx.

Markscheme

dydx+2yx=ln2xx2                 (M1)

attempt to find integrating factor                 (M1)

e2xdx=e2lnx=x2                 (A1)

x2dydx+2xy=ln2x

ddxx2y=ln2x

x2y=ln2xdx

attempt to use integration by parts                 (M1)

x2y=xln2x-x+c                 A1

y=ln2xx-1x+cx2

substituting x=12, y=4 into an integrated equation involving c                 M1

4=0-2+4c

c=32

y=ln2xx-1x+32x2                 A1

 

[7 marks]

Examiners report

[N/A]



A particle moves in a straight line such that at time t seconds ( t 0 ) , its velocity v , in m s 1 , is given by v = 10 t e 2 t . Find the exact distance travelled by the particle in the first half-second.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

s = 0 1 2 10 t e 2 t d t

attempt at integration by parts     M1

= [ 5 t e 2 t ] 0 1 2 0 1 2 5 e 2 t d t     A1

= [ 5 t e 2 t 5 2 e 2 t ] 0 1 2     (A1)

 

Note:     Condone absence of limits (or incorrect limits) and missing factor of 10 up to this point.

 

s = 0 1 2 10 t e 2 t d t     (M1)

= 5 e 1 + 5 2   ( = 5 e + 5 2 )   ( = 5 e 10 2 e )     A1

[5 marks]

Examiners report

[N/A]



Consider the function q ( x ) = x 5 10 x 2 + 15 x 6 ,   x R .

Show that the graph of y = q ( x ) is concave up for x > 1 .

[3]
e.i.

Sketch the graph of y = q ( x ) showing clearly any intercepts with the axes.

[3]
e.ii.

Markscheme

d 2 y d x 2 = 20 x 3 20      M1A1

for x > 1 ,   20 x 3 20 > 0 concave up     R1AG

 

[3 marks]

e.i.

M17/5/MATHL/HP1/ENG/TZ1/B12.e.ii/M

x -intercept at ( 1 ,   0 )      A1

y -intercept at ( 0 ,   6 )      A1

stationary point of inflexion at ( 1 ,   0 ) with correct curvature either side     A1

[3 marks]

e.ii.

Examiners report

[N/A]
e.i.
[N/A]
e.ii.



Consider the curve C defined by y2=sinxy , y0.

Show that dydx=ycosxy2y-xcosxy.

[5]
a.

Prove that, when dydx=0 , y=±1.

[5]
b.

Hence find the coordinates of all points on C, for 0<x<4π, where dydx=0.

[5]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt at implicit differentiation       M1

2ydydx=cosxyxdydx+y       A1M1A1


Note: Award A1 for LHS, M1 for attempt at chain rule, A1 for RHS.


2ydydx=xdydxcosxy+ycosxy

2ydydx-xdydxcosxy=ycosxy

dydx2y-xcosxy=ycosxy       M1


Note: Award M1 for collecting derivatives and factorising.


dydx=ycosxy2y-xcosxy       AG


[5 marks]

a.

setting dydx=0

ycosxy=0       (M1)

y0cosxy=0       A1

sinxy=±1-cos2xy=±1-0=±1  OR  xy=2n+1π2n  OR  xy=π2, 3π2,       A1


Note: If they offer values for xy, award A1 for at least two correct values in two different ‘quadrants’ and no incorrect values.


y2=sinxy>0       R1

y2=1       A1

y=±1       AG


[5 marks]

b.

y=±11=sin±xsinx=±1  OR  y=±10=cos±xcosx=0       (M1)

sinx=1π2,1,5π2,1       A1A1

sinx=-13π2,-1,7π2,-1       A1A1


Note:
Allow ‘coordinates’ expressed as x=π2, y=1 for example.
Note: Each of the A marks may be awarded independently and are not dependent on (M1) being awarded.

Note: Mark only the candidate’s first two attempts for each case of sinx.

[5 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.



Find the coordinates of the points on the curve  y 3 + 3 x y 2 x 3 = 27 at which d y d x = 0 .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt at implicit differentiation      M1

3 y 2 d y d x + 3 y 2 + 6 x y d y d x 3 x 2 = 0       A1A1

Note: Award A1 for the second & third terms, A1 for the first term, fourth term & RHS equal to zero.

substitution of  d y d x = 0       M1

3 y 2 3 x 2 = 0

y = ± x       A1

substitute either variable into original equation       M1

y = x x 3 = 9 x = 9 3    (or  y 3 = 9 y = 9 3 )      A1

y = x x 3 = 27 x = 3    (or   y 3 = 27 y = 3 )      A1

( 9 3 , 9 3 ) , (3, −3)      A1

[9 marks]

Examiners report

[N/A]



Find arcsin x d x

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt at integration by parts with u = arcsin x and v = 1      M1

arcsin x d x = x arcsin x x 1 x 2 d x       A1A1

 

Note:     Award A1 for x arcsin x and A1 for x 1 x 2 d x .

 

solving x 1 x 2 d x by substitution with u = 1 x 2 or inspection     (M1)

arcsin x d x = x arcsin x + 1 x 2 + c    A1

[5 marks]

Examiners report

[N/A]



The function f is defined by  f ( x ) = e sin x .

Find the first two derivatives of f ( x ) and hence find the Maclaurin series for f ( x ) up to and including the  x 2 term.

[8]
a.

Show that the coefficient of x 3 in the Maclaurin series for f ( x ) is zero.

[4]
b.

Using the Maclaurin series for arctan x and e 3 x 1 , find the Maclaurin series for arctan ( e 3 x 1 ) up to and including the x 3 term.

[6]
c.

Hence, or otherwise, find lim x 0 f ( x ) 1 arctan ( e 3 x 1 ) .

[3]
d.

Markscheme

attempting to use the chain rule to find the first derivative     M1

f ( x ) = ( cos x ) e sin x        A1

attempting to use the product rule to find the second derivative      M1

f ( x ) = e sin x ( co s 2 x sin x ) (or equivalent)        A1

attempting to find  f ( 0 ) f ( 0 ) and  f ( 0 )        M1

f ( 0 ) = 1 ; f ( 0 ) = ( cos 0 ) e sin 0 = 1 f ( 0 ) = e sin 0 ( co s 2 0 sin 0 ) = 1         A1

substitution into the Maclaurin formula  f ( x ) = f ( 0 ) + x f ( 0 ) + x 2 2 ! f ( 0 ) +        M1

so the Maclaurin series for f ( x ) up to and including the x 2 term is  1 + x + x 2 2       A1

[8 marks]

a.

METHOD 1

attempting to differentiate  f ( x )        M1

f ( x ) = ( cos x ) e sin x ( co s 2 x sin x ) ( cos x ) e sin x ( 2 sin x + 1 )  (or equivalent)        A2

substituting x = 0 into their f ( x )        M1

f ( 0 ) = 1 ( 1 0 ) 1 ( 0 + 1 ) = 0

so the coefficient of  x 3 in the Maclaurin series for  f ( x ) is zero    AG

 

METHOD 2

substituting sin x into the Maclaurin series for e x        (M1)

e sin x = 1 + sin x + si n 2 x 2 ! + si n 3 x 3 ! +

substituting Maclaurin series for sin x       M1

e sin x = 1 + ( x x 3 3 ! + ) + ( x x 3 3 ! + ) 2 2 ! + ( x x 3 3 ! + ) 3 3 ! +      A1

coefficient of  x 3 is  1 3 ! + 1 3 ! = 0      A1

so the coefficient of  x 3 in the Maclaurin series for  f ( x ) is zero    AG

 

[4 marks]

b.

substituting 3 x into the Maclaurin series for e x        M1

e 3 x = 1 + 3 x + ( 3 x ) 2 2 ! + ( 3 x ) 3 3 ! +       A1

substituting ( e 3 x 1 ) into the Maclaurin series for arctan x     M1

arctan ( e 3 x 1 ) = ( e 3 x 1 ) ( e 3 x 1 ) 3 3 + ( e 3 x 1 ) 5 5

= ( 3 x + ( 3 x ) 2 2 ! + ( 3 x ) 3 3 ! + ) ( 3 x + ( 3 x ) 2 2 ! + ( 3 x ) 3 3 ! + ) 3 3 +     A1

selecting correct terms from above      M1

= ( 3 x + ( 3 x ) 2 2 ! + ( 3 x ) 3 3 ! ) ( 3 x ) 3 3

= 3 x + 9 x 2 2 9 x 3 2      A1

[6 marks]

c.

METHOD 1

substitution of their series       M1

lim x 0 x + x 2 2 + 3 x + 9 x 2 2 +        A1

= lim x 0 1 + x 2 + 3 + 9 x 2 +

= 1 3      A1

 

METHOD 2

use of l’Hôpital’s rule      M1

lim x 0 ( cos x ) e sin x 3 e 3 x 1 + ( e 3 x 1 ) 2   (or equivalent)    A1

= 1 3      A1

 

[3 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.



Find the equation of the tangent to the curve y=e2x3x at the point where x=0.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

x=0y=1        (A1)

appreciate the need to find dydx        (M1)

dydx=2e2x-3        A1

x=0dydx=-1        A1

y-1x-0=-1   y=1-x        A1


[5 marks]

Examiners report

[N/A]



Given that 0 ln k e 2 x d x = 12 , find the value of k .

Markscheme

1 2 e 2 x seen       (A1)

attempt at using limits in an integrated expression ( [ 1 2 e 2 x ] 0 ln k = 1 2 e 2 ln k 1 2 e 0 )         (M1)

= 1 2 e ln k 2 1 2 e 0        (A1)

Setting their equation  = 12        M1

Note: their equation must be an integrated expression with limits substituted.

1 2 k 2 1 2 = 12        A1

( k 2 = 25 ) k = 5        A1

Note: Do not award final A1 for  k = ± 5 .

[6 marks]

Examiners report

[N/A]



The lines l1 and l2 have the following vector equations where λ, μ.

l1:r1=32-1+λ2-22

l2:r2=204+μ1-11

By using the substitution u=sinx, find sinxcosxsin2x-sinx-2dx.

Markscheme

u=sinxdu=cosxdx (or equivalent)        A1

=uu2-u-2du        A1

attempt to use partial fractions        M1

uu+1u-2Au+1+Bu-2uAu-2+Bu+1

Valid attempt to solve for A and B         (M1)

A=13 and B=23        A1

uu+1u-213u+1+23u-2

13u+1+23u-2du=13lnu+1+23lnu-2+C (or equivalent)        A1

 

Note: Condone the absence of +C or lack of moduli here but not in the final answer.

 

=13lnsinx+1+23lnsinx-2+C        A1

 

Note: Condone further simplification of the correct answer.

 

[7 marks]

Examiners report

[N/A]



A right circular cone of radius r is inscribed in a sphere with centre O and radius R as shown in the following diagram. The perpendicular height of the cone is h , X denotes the centre of its base and B a point where the cone touches the sphere.

Show that the volume of the cone may be expressed by  V = π 3 ( 2 R h 2 h 3 ) .

[4]
a.

Given that there is one inscribed cone having a maximum volume, show that the volume of this cone is 32 π R 3 81 .

[4]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt to use Pythagoras in triangle OXB       M1

r 2 = R 2 ( h R ) 2      A1

substitution of their r 2 into formula for volume of cone  V = π r 2 h 3        M1

= π h 3 ( R 2 ( h R ) 2 )

= π h 3 ( R 2 ( h 2 + R 2 2 h R ) )        A1

Note: This A mark is independent and may be seen anywhere for the correct expansion of  ( h R ) 2 .

= π h 3 ( 2 h R h 2 )

= π 3 ( 2 R h 2 h 3 )        AG

[4 marks]

a.

at max,  d V d h = 0        R1

d V d h = π 3 ( 4 R h 3 h 2 )

4 R h = 3 h 2

h = 4 R 3 (since  h 0 )     A1

EITHER

V max = π 3 ( 2 R h 2 h 3 )  from part (a)

= π 3 ( 2 R ( 4 R 3 ) 2 ( 4 R 3 ) 3 )      A1

= π 3 ( 2 R 16 R 2 9 ( 64 R 3 27 ) )      A1

OR

r 2 = R 2 ( 4 R 3 R ) 2

r 2 = R 2 R 2 9 = 8 R 2 9      A1

V max = π r 2 3 ( 4 R 3 )

= 4 π R 9 ( 8 R 2 9 )      A1

THEN

= 32 π R 3 81        AG

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Consider the functions  f , g ,  defined for  x R , given by f ( x ) = e x sin x and g ( x ) = e x cos x .

Hence, or otherwise, find 0 π e x sin x d x .

Markscheme

METHOD 1

Attempt to add  f ( x ) and  g ( x )       (M1)

f ( x ) + g ( x ) = 2 e x sin x     A1

0 π e x sin x d x = [ e x 2 ( sin x + cos x ) ] 0 π (or equivalent)      A1

Note: Condone absence of limits.

= 1 2 ( 1 + e π )     A1

 

METHOD 2

I = e x sin x d x

= e x cos x e x cos x d x OR  = e x sin x + e x cos x d x      M1A1

= e x sin x e x cos x e x sin x d x

I = 1 2 e x ( sin x + cos x )      A1

0 π e x sin x d x = 1 2 ( 1 + e π )     A1

[4 marks]

Examiners report

[N/A]